Fujitsu เผยกรณีศีกษา Kawasaki Geological Engineering Co., Ltd. ทำการสำรวจถนนให้กับรัฐบาลท้องถิ่นและระดับชาติ โดยใช้เทคโนโลยีกรรมสิทธิ์ของตนเองซึ่งสามารถตรวจจับหลุมที่อยู่ต่ำกว่าผิวหน้าถนนได้แต่ก็ยังเป็นวิธีที่ใช้เวลานาน ทางบริษัทฯ จึงได้ตัดสินใจเลือกใช้โซลูชัน AI ของฟูจิตสึอย่าง “Zinrai Deep Learning System” (ระบบเรียนรู้เชิงลึกซินไร) เพื่อวิเคราะห์ข้อมูลจำนวนมหาศาล ซึ่งแต่ก่อนต้องวิเคราะห์โดยใช้คนการใช้ปัญญาประดิษฐ์ (AI) เพื่อเรียนรู้และจดจำรูปแบบเฉพาะของหลุมทำให้กระบวนการทำงานของบริษัทฯ มีความเป็นกลางและลดเวลาในการตรวจหาความผิดพลาดได้ถึง 90% พร้อมกับลดเวลาในการวิเคราะห์โดยรวมลงครึ่งหนึ่ง
“ฟูจิตสึเข้าใจธุรกิจของเราเป็นอย่างดี การนำ AI มาใช้ได้อย่างรวดเร็วและวิธีการในการระบุข้อมูลการฝึกที่มีความแม่นยำสูงเกิดขึ้นมาได้ เพราะฟูจิตสึเข้าใจทุกแง่ส่วนของธุรกิจเราเป็นอย่างดีนั่นเอง การสื่อสารทางเทคนิคก็ทำได้อย่างง่ายดายมากเช่นกัน” Mr.Toshihiko Sakagami, CEO Kawasaki Geological Engineering Co., Ltd. กล่าว
เครื่องมือที่ดีขึ้นหมายถึงจะมีข้อมูลมากขึ้น แต่ก็มีต้นทุนในการวิเคราะห์สูงขึ้นเป็นเงาตามตัว
ในฐานะเป็นผู้บุกเบิกการสำรวจทางธรณีวิทยา Kawasaki Geological Engineering Co., Ltd. ทำการทดสอบที่ระดับใต้พื้นผิวตามคำขอของรัฐบาลแห่งชาติและรัฐบาลท้องถิ่น และได้รับมอบหมายงานให้จัดการทรัพย์สินเหล่านี้เมื่อหลุมมีการก่อตัวขึ้นใต้ถนน ในสถานการณ์ที่เลวร้ายที่สุดอาจก่อให้เกิดการทรุดตัวของถนนที่ก่อให้เกิดความเสียหายสูงได้ ตัวอย่างที่ร้ายแรงที่สุดคือ หลุมยุบขนาดยักษ์ที่ปรากฏตัวขึ้นใกล้กับสถานี JR Hakataในบริเวณคิวซิวเมื่อเดือนพฤศจิกายนปี 2016 แม้หลุมยุบอาจจะเกิดได้จากหลายสาเหตุ แต่กระทรวงที่ดิน โครงสร้างพื้นฐาน การคมนาคม และการท่องเที่ยว (Ministry of Land, Infrastructure, Transport and Tourism) แห่งญี่ปุ่นก็อธิบายว่าส่วนใหญ่หลุมพวกนี้จะมีสาเหตุมาจากท่อระบายน้ำ เสียที่เสื่อมโทรม หลุมอาจจะมองเห็นไม่ชัด เพราะประเทศญี่ป่นุ มีการบำรุงรักษาถนนอย่างดีเยี่ยม แต่ในปี 2015 เพียงปีเดียว มีถนนที่ทรุดตัว 3,300 จุดทั่วประเทศญี่ปุ่น
ทางบริษัทฯ ได้พัฒนาเทคโนโลยีหลากหลายสำหรับการสำรวจใต้พื้นผิว เพื่อตรวจหาหลุมที่อยู่ใต้ผิวถนน ซึ่งหน่วยวิศวกรเคลื่อนที่ของบริษัทฯใช้ขณะที่เดินทางบนถนนไปรอบๆ ประเทศ Mr.Toshihiko Sakagami ซีอีโอของ Kawasaki Geological Engineering กล่าวว่า “วิธีการแบบดั้งเดิมช่วยให้เราสำรวจได้ลึกแค่ 1.5 เมตรเท่านั้นแต่หลุมที่เกิดจากท่อระบายน้ำเสียที่ทรุดโทรมจะเกิดลึกกว่านั้นลงไปอีกเรานำเทคโนโลยีของเราและความเชี่ยวชาญที่เรามีมาปรับใช้ และพัฒนา“ระบบเรดาร์ส่งเสียง” ได้สำเร็จ ซึ่งระบบนี้สามารถตรวจจับสัญญาณตอบกลับได้ในระดับลึกขึ้น และช่วยให้เราสำรวจได้ในระดับลึก 3 – 5 เมตรในระดับประสิทธิภาพเท่าเดิม”การที่มีเครื่องมือสำรวจได้ลึกกว่าเดิมถึง 2 เท่า ทำให้บริษัทฯ มีข้อมูลจำนวนมาก หากมีการพิมพ์ข้อมูลออกมา ต้องใช้กระดาษขนาด A3 ประมาณ 1,000 – 2,000 แผ่นต่อถนนยาว 100 กิโลเมตร ในการระบุหลุมต้องใช้ทีมงาน 5 – 6 คนและใช้เวลาประมาณ 1 เดือน
โดยในแต่ละครั้งต้องศึกษาข้อมูลคลื่นเรดาห์ที่พิมพ์ออกมาเป็นหลายร้อยหลายพันหน้า วิศวกรจะมองหาจุดที่น่าจะมีหลุมและความผิดปกติอื่นๆ แล้วจึงระบุตำแหน่งหลุมที่แท้จริง ดังนั้นจึงกลายเป็นงานใช้เวลาและมีค่าใช้จ่ายสูง วิศวกรใช้เวลาอย่างมากในการแก้ปัญหาและลดความผิดพลาดที่เกิดจากการมองไม่เห็นให้มากที่สุดเท่าที่จะทำได้เพิ่มความแม่นยำและประสิทธิภาพของการวิเคราะห์ซึ่งเป็นจุดที่มีความผิดพลาดเกิดขึ้นไม่ได้การที่จะระบุหลุมได้จากข้อมูลที่ได้มานั้นต้องอาศัยประสบการณ์ วิศวกรที่เข้ามาทำงานใหม่ๆ อาจพลาดไม่เห็นบางหลุม เนื่องจากข้อมูลสัญญาณไม่กระจ่างทันที ดังนั้น วิศวกรที่มีประสบการณ์มากกว่าจึงต้องตรวจสอบยันความถูกต้องเพื่อหลีกเลี่ยงความผิดพลาด Kawasaki Geological Engineering มุ่งเน้นหลักๆ ไปที่การวิเคราะห์เพื่อรักษาความปลอดภัยให้กับถนนที่บริษัทฯ สำรวจโชคดีที่ในปัจจุบัน บริษัทฯ มีพนักงานที่มีประสบการณ์สูงมากมายซึ่งสามารถปฏิบัติงานได้อย่างง่ายดาย
อย่างไรก็ดี Mr.Toshihiko Sakagami กล่าวว่า “ถ้าพิจารณาในแง่กำลังคนและปัจจัยอื่นๆ เราไม่สามารถทำงานแบบนี้ต่อไปได้ นั่นเป็นสาเหตุว่าทำไมเราถึงเริ่มสนใจ AI วิศวกรของเราบางคนมีความรู้เรื่อง AI ด้วยเหตุนี้เราจึงมีไอเดียพอสมควรว่าจะนำ AI มาใช้ในการตรวจหาหลุมในแบบเดียวกับการตรวจยันความถูกต้องโดยวิศวกรที่มีประสบการณ์ แต่ปัญหาที่พบคือ ไม่มีแอปพลิเคชันที่วางขายอันไหนที่ใช้ในการทำงานแบบของเรา ซึ่งหมายถึงว่าเราไม่สามารถนำเทคโนโลยีสำเร็จรูปมาใช้ได้ปัญญาประดิษฐ์ลดเวลาการตรวจจับความผิดปกติลง 90% ขณะที่เวลาทั้งหมดที่วิศวกรใช้ในการวิเคราะห์ก็ลดลงครึ่งหนึ่งด้วยเช่นกัน
บริษัทฯ รู้ดีว่าตนเองไม่สามารถนำ AI มาใช้ด้วยตนเองได้อย่างรวดเร็วจึงได้รับข้อเสนอให้นำ “Zinrai Deep Learning” (การเรียนรู้เชิงลึกซินไร) มาใช้จาก Fujitsu Traffic & Road Data Service Ltd. ซึ่งเป็นบริษัทที่ Kawasaki Geological Engineering เคยร่วมมือกันมาก่อนหน้านี้ระหว่างการคุยงาน ทั้งสองบริษัทพบว่าตนเองสามารถนำเทคโนโลยีมาใช้ได้ในเวลาไม่ถึงหนึ่งเดือน และความรวดเร็วในการนำระบบมาใช้ได้นี่เองที่เป็นปัจจัยทำให้ทั้งสองบริษัทฯ ตัดสินใจเลือกใช้ Kawasaki Geological Engineering เสนอฟูจิตสึว่า ขอบเขตของ AI ควรมีการจำกัดแค่ระบุความผิดปกติที่อาจเป็นหลุม กล่าวอีกอย่างหนึ่งคือ จะมีการจำกัดการใช้ระบบถึงแค่ขั้นตอนก่อนหน้าการระบุขั้นสุดท้ายโดยวิศวกรของบริษัทฯเท่านั้น ทั้งสองบริษัทมีการสื่อสารกันอย่างใกล้ชิด
จึงทำให้สามารถเร่งกระบวนการเรียนรู้เชิงลึกได้อย่างมีประสิทธิภาพ Toshihiko Sakagami แสดงทัศนะเกี่ยวกับวัตถุประสงค์หลักของบริษัท
“เงื่อนไขอันแรกสุดของเราคือ ต้องเจอความผิดปกติทุกๆ จุด และจะต้องไม่พลาดแม้แต่จุดเดียว” การพัฒนา AI เริ่มจากการสร้างเงื่อนไขอันแรกนี้ และเริ่มเป็นรูปเป็นร่างในเวลาไม่ถึงหนึ่งเดือน โดยมีการสร้างข้อมูลการฝึกขนาดใหญ่และโหลดเข้าไปใน Zinrai Deep Learning ทันที การให้ข้อมูลการฝึกเพิ่มและการปรับระบบให้เข้าที่เข้าทางทำให้บริษัทฯ สามารถลดเวลาการตรวจหาเบื้องต้นได้ถึง 90% ตอนนี้ระบบสามารถตรวจหาความผิดปกติได้มีความแม่นยำเกือบถึง 100% ดังนั้นหากรวมเวลาที่ใช้ในการตรวจสอบผลทางรูปภาพ เวลาโดยรวมที่ใช้ในการระบุว่ามีหลุมใต้พื้นผิวจุดนั้นๆ หรือไม่ก็ลดลงถึงครึ่งหนึ่ง
Shigeharu Yamada ผู้จัดการทั่วไปด้านการบำรุงรักษาประจำ Kawasaki Geological Engineering กล่าวว่า “ตอนแรกๆวิศวกรของเราก็ไม่ค่อยมั่นใจกับระบบเท่าไร แต่ตอนนี้วิศวกรของเราก็ประทับใจกับผลที่ได้รับจาก AI Toshihiko Sakagami กล่าวเสริมว่า “แต่นั่นไม่ได้หมายความว่า เราไม่ต้องพึ่งคน อย่างไรเราก็ต้องพึ่งวิศวกรที่เชี่ยวชาญเฉพาะทางเสมอ สำหรับธุรกิจของเรานั้น การพัฒนา AI และการพัฒนาวิศวกรมีความเกี่ยวข้องกันมากแม้ว่าจะดูเป็นเรื่องที่ต่างกันสิ่งที่สำคัญที่สุดคือ การรู้วิธีใช้ AI Shigeharu Yamada กล่าวว่า “การนำ Zinrai Deep Learning ช่วยให้เรามองข้อมูลอย่างเป็นกลาง
นอกจากการตรวจหาความผิดปกติแล้วหากเราพัฒนาความแม่นยำของการระบุหลุมเอง ผมคาดว่าในไม่ช้าเราจะสามารถลดเวลาการวิเคราะห์ลงได้ถึง 80% ทีเดียว” การนำเทคโนโลยีมาใช้ช่วยทำให้มีประสิทธิภาพมากขึ้น โดยช่วยลดเวลาวิเคราะห์ลงครึ่งหนึ่งและลดต้นทุน “และผลที่ได้คือเราสามารถรับงานได้เพิ่มขึ้น”
ShigeharuYamada กล่าว Kawasaki Geological Engineering เริ่มคิดไอเดียต่อไปแล้วโดยปกติแล้วทางบริษัทฯ จะส่งรถเฉพาะออกไปทำการวัด แต่ตอนนี้บริษัทฯกำลังพิจารณาว่าจะติดตั้งเซ็นเซอร์ที่รถยนต์ ซึ่งรัฐบาลท้องถิ่นจะใช้ในการลาดตระเวนแต่ละวัน และจะทำให้การวิเคราะห์ง่ายยิ่งขึ้นไปอีกการตรวจสอบข้อมูลอย่างต่อเนื่องทุกวันควรจะทำให้การค้นพบหลุมอันตรายทำได้เร็ว ขึ้นมาก
Mr.Toshihiko Sakagami กล่าวว่า “ในฐานะนักสำรวจทางภูมิศาสตร์มืออาชีพ เราไม่เพียงแค่ตรวจหาหลุม แต่เราต้องวิเคราะห์สาเหตุด้วยเช่นกัน การรู้สาเหตุเหล่านี้จะช่วยให้ผู้คนป้องกันไม่ให้เกิดหลุมตั้งแต่ในตอนแรก เราภูมิใจในงานที่เราทำ” การใช้เทคโนโลยีของบริษัทฯ เองผสมกับ Zinrai Deep Learning ทำให้ Kawasaki Geological Engineering จะยังคงเดินหน้าทำให้สังคมมีความปลอดภัยสำหรับทุกคน
###